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Abstract

The product replacement algorithm is a heuristic de-
signed to generate random group elements. The idea is to
run a random walk on generating k-tuples of the group, and
then output a random component. The algorithm was de-
signed by Leedham-Green and Soicher ([31]), and further
investigated in [12]. It was found to have an outstanding
performance, much better than the the previously known al-
gorithms (see [12, 22, 26]). The algorithm is now included
in two major group algebra packages GAP [42] and
MAGMA [10].

In spite of the many serious attempts and partial results,
(see [6, 14, 15, 21, 22, 32, 39, 40]), the analysis of the al-
gorithm remains difficult at best. For small values of k
even graph connectivity becomes a serious obstacle (see
[19, 37, 39, 40]). The most general results are due to Diaco-
nis and Saloff–Coste [22], who used a state of the art ana-
lytic technique to obtain polynomial bounds in special cases,
and (sub)-exponential bounds in general case. The main re-
sult of this paper is a polynomial upper bound for the cost
of the algorithm, provided k is large enough.

1. Introduction

The product replacement algorithm is defined as follows
([12]). Given a finite group G, let Nk(G) be a set of k-
tuples (g) = (g1; : : : ; gk) of elements of G, such thathg1; : : : ; gki = G. We call elements of Nk(G) the gener-
ating k-tuples. Given a generating k-tuple (g1; : : : ; gk), de-
fine a move on it as follows. Choose uniformly a pair (i; j),
such that 1 � i 6= j � k, and apply one of the following
four operations with equal probability:R�i;j : (g1; : : : ; gi; : : : ; gk)! (g1; : : : ; gi � g�1j ; : : : ; gk)L�i;j : (g1; : : : ; gi; : : : ; gk)! (g1; : : : ; g�1j � gi; : : : ; gk)�Supported by the NSF Postdoctoral Research Fellowship.

Note that these moves map a generating k-tuple into a gen-
erating k-tuple. Now apply these moves t times (the choice
of the move must be uniform and independent at each step),
and return a random component of the resulting generat-
ing k-tuple. This is the desired “random” element of the
group G.

Another way to describe the algorithm, is to define onNk(G) a structure of a graph induced by maps R�i;j andL�i;j .
This makes Nk(G) into a 4k(k � 1)-regular graph with no
orientation on edges, but with loops when k > d(G), whered(G) is the minimal number of generators of G. Now the al-
gorithm consists of running a nearest neighbor random walk
on this graph (for t steps) and returning a random component
of the stopping state. We refer to this random walk as the
product replacement random walk W =Wk(G).

For a technical reason which will be clear later, it is useful
to define a lazy product replacement random walk. Flip a
fair coin at every walk step and if heads, do as above, and if
tails stay put. This can slow down the walk by a factor of at
most 2, but helps avoid parity problems with the graph being
bipartite or nearly bipartite (see [13]).

About presentation of groups. We assume that the group
is given as a black box group, which means that there is an
oracle which can multiply elements, invert them, and com-
pare them with identity (see [6]). We will not use the latter
operation. The group is then defined by a set of generators(g1; : : : ; gr). Now, in the algorithm one should take k � r
and set gr+1 = � � � = gk = id (see [12]).

A few words about the parameters k and t. In the origi-
nal paper [12] the authors showed that when k � 2 log2 jGj
the product replacement graph �k(G) of moves on gener-
ating k-tuples, is (strongly) connected. It was further noted
in [6] that when k � 2 log2 jGj the diameter of �k(G) isO(k log jGj).

Let P be a distribution on set X , and let U be a uniform
distribution. Define the total variation distance as follows:kP�Uktv = 12 Xx2X ����P(x)� 1jX j ���� :
It is easy to see that 0 � k P�U ktv � 1.
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Main Theorem Let G be a finite group, and let k =
(log jGj log log jGj. Denote by Qt the probability distribu-
tion of the t-th step of the lazy product replacement random
walk. Then kQt �Uktv < "; givent > C �log4 jGj log2 k+k log k log jGj�2 k log jGj log(1=");
where C is a universal constant.

In other words, when k = �(log jGj log log jGj), the
mixing time of the walk is O�log9 jGj(log log jGj)5�. This
is a significant improvement over the general results in [22],
which involve a nasty parameter �(G; k) defined as the
largest diameter of the Cayley graph of G on k generators.
On the other hand, the bounds we obtain are quite worse
when compared to the bound in [32] in special cases of
abelian and nilpotent groups. We elaborate further on pre-
vious results in the next section.

Before we conclude, let us emphasize however that the
Main Theorem partly closes the gap between theoretical and
practical results.

2. Previous results and Applications

An extensive review of the previous results and related
subjects can be found in a review article [40]. Thus we shall
restrict ourselves to a very brief sketch.

In [14, 15] the asymptotic for the mixing time when k !1 is obtained. While somewhat better than ours (we getO(k3 log2 k) versus O(k2 log k) known bound), the con-
stants implied by O(�) notation in their case were roughlyjGjd(G), and thus inferior to our poly-log constants.

In an analytically elaborate papers [21, 22], the authors
obtained general bounds, which seem subexponential for
certain abelian and nilpotent groups, and conjectured poly-
nomial for simple groups. In [22] various specific examples
were considered, but even for all abelian groups the authors
do not obtain polynomial bounds. This was established by
the author in [39], and then improved in [32] by an algebraic
technique. In a different direction, it was shown in [32] that
when k is fixed and jGj ! 1, the mixing time of the walk
is O(log jGj), when G is nilpotent of bounded class. This
suggests that perhaps our polynomial but admittedly weak
bounds might be improved in the future.

A few words about the applications. Starting with the
first algorithms of Sims [44], a large number of group al-
gorithms has been developed. Recently, various random-
ized algorithms has been introduced in a generality of ma-
trix and black box groups (see e.g. [11, 29, 33]), which
assume an access to (nearly) uniform group elements (see
[6, 28]). This assumption is justified by a pioneer work of
Babai [4], who gave the first polynomial time algorithm for
generation of random group elements. His algorithms runs

inO(log5 jGj) time, which is quite superior when compared
to our O?(log9 jGj) bound.

In practice, however, only the product replacement al-
gorithm is used as it exhibited a remarkable performance
([12, 26, 31]). It is natural to conjecture that the algorithm
remains polynomial even for relatively small k. This was
partly justified in [32] by reducing the problem to a long
standing open algebraic problem. It is nevertheless clear
that one can always add trivial elements to fill the rest of thek-tuple even if a given generating set is small1. This shows
that the algorithm has a rigorously polynomial modification.

3. Proof outline

In a nutshell, the main underlying idea is to “emulate”
the analysis of Babai algorithm in the case of product re-
placement. While we do not wish to give a general method
for such “emulation”, it is available indeed, and will be pre-
sented in the future publication. The idea is somewhat tech-
nical, so for the sake of brevity we do not spell it out in this
case, but rather present an independent proof, which we out-
line below.

The proof is based on the use of a well known multi-
commodity flow technique, basic results of which we recall
below in section 4. Roughly, one wishes to send one unit
of commodity between every pair of vertices in a graph so
as to minimize congestion along the edges. The congestion
achieved gives a bound on the mixing time (see e.g. [45]).

Now, the construction of the multicommodity flow is
based on a modified version of the Babai’s algorithm.
Speaking loosely, one considers the first vertex of the graph
as an input in Babai’s algorithm, and lets the commodity
move along the edges according to the algorithm operations.
At the end, the distribution of commodities is somewhat
nonuniform, so a standard fill up argument is used (cf. [1]).

Unfortunately a good portion of the analysis in [4] can’t
be translated to our somewhat more general setting. The
problem is that our starting vertex can be arbitrary and we
have a version of reversibility problem, not unlike that in
quantum computing (cf. [30]). An analytic approach (cf.
[23]), combined with various probabilistic bounds, resolves
the problem. As a byproduct, we obtain a better boundO(log4 jGj) for the (modified) Babai algorithm. This will
be included in the full version of the paper.

The rest of the paper is constructed as follows. In sec-
tions 4, 5 we present some background material on multi-
commodity flows and random walks on groups. While most
definitions are standard, some important notation are intro-
duced and a few important technical results are recalled.

Section 6 is the key section where we introduce a mul-
ticommodity flow used in the proof main Theorem. In sec-

1This is also done in practice (see [12, 31])
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tions 7, 8 the congestion of the flow is computed based on
a key technical Theorem 8.1, which is roughly analogous to
the main result of Babai [4] (and stronger in effect). Finally,
Theorem 8.1 is proved in sections 9, 10.

4. Random walks on graphs

By � = (V;E) we denote oriented graphs, possibly with
loops, on a set of vertices V with a set of edges E. For con-
venience, we write e 2 � in place of e 2 E. A nearest
neighbor random walk in graph � starting at v 2 V , denotesW = Wv(�), is defined as a walk which starts at v and at
each step moves along a uniformly chosen edge leaving v.

We say that � is symmetric if the number of edges(v; w) 2 � is equal to the number of edges (w; v) 2 �.
Graph � is called D-regular if every vertex w 2 V has the
same in-degree and out-degree deg(w). From now on we al-
ways assume that our graph � is symmetric and D-regular.

Let X be a finite set, and let P be a probability distribu-
tion on X . For the rest of the paper U will always denote a
uniform distribution. There are several ways to measure a
distance between Q and U (cf. [2]). First, define the total
variation distance :kP�Uktv = maxB�X ���� P(B)� jBjjX j ���� = 12 Xx2X ����P(x) � 1jX j ���� ;
where P(B) =Px2B P(x).

Similarly, define the separation distance :s(P) = jX j �maxx2X � 1jX j � P(x)� :
One can think of s(P) as of one-sided `1-distance. Note
that 0 � kP�Uktv � s(P) � 1.

Denote by Qtv the probability distribution of the t-th step
of the walkWv(�). If � is symmetric, connected, and is not
bipartite, it is well known that Qtv(w) ! 1=N , where N =jV j. ByA = (av;w) denote the transition matrix of the walk:av;w = #f(v; w) 2 �g=deg(v). By 1 = �0 > �1 � �2 �� � � � �N�1 > �1 denote the eigenvalues ofA, whereN =jV j. Let � = maxfj�1j; j�N�1jg be the eigenvalue gap. It
is easy to see that����Qtv(w) � 1N ���� � �t �N; kQtv �Uktv � �t �N;
for all v 2 V (see e.g. [2]). When the walk is lazy (see
introduction), we have �N�1 � 0, � = �1, and����Qtv(w) � 1N ���� � �t1 �N; kQtv �Uktv � �t1 �N;
for all v 2 V .

Let � = (V;E) be an oriented graph, u; v 2 V . Au � v flow fu;v is a function on the edges of �, such thatfu;v(e) � 0 for all e 2 � andXj fu;v(j; i) =Xj fu;v(i; j) for all i 2 V; i 6= u; v:
The value of a flow is defined as

val(f) =Xj fu;v(j; v) =Xj fu;v(u; j):
A multicommodity flow is a collection f = �fu;v�

for all pairs of vertices u 6= v. We say that multicommodity
flow f is uniform ifXv val(fu;v) =Xv val(fv;u) = 1N2 for all u 2 V:
One can think of a flow fu;v as of a way to send val(fu;v)
units of (u; v) commodity from u to v through edges of �.
Similarly, a uniform flow f is a way to send 1=N units of
each of the N2 commodities through edges of �.

One way to construct a uniform multicommodity flow is
to use paths in �. Let Xu;v be a set of simple paths betweenu and v. Takefu;v(e) = 1N2 � jXu;vj � jf 2 Xu;v j  3 egj
for any e 2 �. Now, if a collection of paths X = (Xu;v) is
given, this construction defines a multicommodity flow. We
refer to [45] for the inverse procedure and further details. By`(X) denote the maximum length of paths in X .

Let e 2 E be an edge in a D-regular graph �. Define
flow though e as f(e) =Xu;v fu;v(e):
Define the cost of a flow as

cost(f) =Xe2� f(e):
Observe now that for a uniform flow f which corresponds
to set of path X the cost is given by

cost(f) =Xe2� f(e) � Xu;v2V `(X) � val(u; v)� N2 `(X) 1N2 = `(X):
If all paths in X have the same length, the above inequality
becomes an equality.

Define the congestion �(f) to be the scaled maximum
flow through edges in �:�(f) = N �D �maxe2� f(e):
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A conductance � = �(�) of a graph � is defined by� = minX�V; 1�jXj�N=2 jE(X;V nX)jD � jX j ;
where N = jV j, E(X;Y ) = fe = (v; w) 2 � j v 2X;w 2 Y g. A well known bound of Jerrum and Sinclair
[27] (see also [2, 23, 45]) states that�22 � 1� �1 � 2�:

Let f = (fu;v) be a uniform multicommodity flow with
maximal congestion �(f), in a D-regular graph �. Then� � 12 �(f)
Now, if f is a uniform multicommodity flow with small con-
gestion, one can obtain bounds on the eigenvalue gap via
bounds on conductance:1� � � 18 �2(f)
In general case, a shortcut was discovered by Diaconis and
Stroock [23] (see also [2, 20, 45]).

Theorem 4.1 ([23]) Let f be a uniform multicommodity
flow, given by a set of paths X . Then1� �1 � 1�(f) � `(X)
5. Probability on groups

Let G be a finite group. By d(G) denote the minimum
number of generators of G. A generating set is called redun-
dant if one generator can be omitted so that the remaining
generators still generate G. By d(G) denote the maximum
size of the nonredundant generating set. Note that1 � d(G) � d(G) � s(G) � log2 jGj;
where s(G) is the length of the longest subgroup chain in G.

We denote generating k-tuples by (g) = (g1; : : : ; gk),
where hg1; : : : ; gki = G, k � d(G). The set of generatingk-tuples is denoted byNk(G). Also, let Nk(G) = jNk(G)j
denote the number of generating k-tuples of G.

Theorem 5.1 ([37]) For any finite group G, 1 > " > 0,
we have Nk(G) > (1 � ") � jGjk , given k > log2 jGj +2 + log2 1=".

A weaker version of the result in Theorem 5.1, withk > 2 log2 jGj + 
(1) follows easily from P(gi =2hg1; : : : ; gi�1i) � 1=2. We refer to [37] for references and
generalizations.

By �k(G) denote the product replacement graph with
edges defined by the moves R�i;j , L�i;j , I�i;j and J�i;j ,
where R�i;j and L�i;j are as in the introduction, 1 � i 6=j < n, and I�i;j , J�i;j are defined as loops in �k(G). We will
say that the edges corresponding to the same move have the
same label.

Observe now that the lazy product replacement random
walk, denotes Wk(G), can be defined now as the nearest
neighbor random walk on �k(G).

Let G be a finite group, (g) = (g1; : : : ; gk) 2 Gk be anyk-tuple. Define random subproducts of (g) as follows:h = g�11 � : : : � g�kk ;
where �i 2 f0; 1g, 1 � i � k, are chosen by independent
flips of a fair coin (see [25]). Note that distribution of hmay
depend on the order of elements in a k-tuple.

Theorem 5.2 ([25]) Let (g) be a random k-tuple, chosen
uniformly from Gk. By P(g) denote be the probability distri-
bution on G of the random subproducts of (g). Then for all"; � > 0 we haveP�maxh2G ����P(g)(h)� 1jGj ���� � "jGj� > 1� �;
where the probability P(�) is over all (g), and k �2 log2 jGj+ 2 log2(1=") + log2(1=�).

Theorem 5.3 ([8, 16, 17]) Let h1; : : : ; hr be a collection
of independently chosen random subproducts of generators.
Then hh1; : : : ; hri = G with probability > 1 � e�"2r=8,
given r � 2 log2 jGj=(1� "), 1 > " > 0.

We will need to use a slightly modified version of the
Theorem. Recall that the proof is based on the following
well known Lemma.

Lemma 5.4 ([8, 16, 17]) Let H < G be a proper sub-
group of G = hg1; : : : ; gki. Then a random subproducth = g�11 � : : : � g�kk =2 H with probability � 1=2.

Let S = fg1; : : : ; gkg be a generating set of G. Define
a symmetric random walk on G of length t to be a random
product h = g�1i1 � : : : � g�1it ;
and a lazy symmetric random walk on G of length t to be a
random producth0 = �g�1i1 ��1 � : : : � �g�1it ��t ;
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where ij 2 f1; : : : ; kg, �j 2 f0; 1g, 1 � j � t, and signs
are chosen uniformly and independently. One can think of
this random walk as of lazy nearest neighbor random walk
on the Cayley graph � = Cayley(G;R) of G with a gener-
ating set R = S [ S�1.

Denote by Qt the probability distribution of h as above.
From the above, it is easy to see that Qt(h) ! 1=jGj ast ! 1, for all h 2 G. A general bound on the rate of con-
vergence can be obtained as follows.

Construct a a uniform multicommodity flow f as follows.
Let S be the generating set as above. For every elementsw 2 G fix a shortest decomposition w = s1 � s2 : : : sl,
where si 2 S. Now send 1=jGj2 of a commodity g � h
from g to h via a path , which corresponds to the decom-
position of w = g�1h:(g; h) = (g ! gs1 ! gs1s2 ! � � � ! gs1s2 : : : sl = h):
For the conductance, the Jerrum-Sinclair bound gives:� � 12 � jRj ;
where � is the maximal number of times generator s appears
in the decomposition (w), maximum taken over all s 2 S,w 2 G. Note that � � �, where � = �(G;R) is
the diameter of � = Cayley(G;R). Further, the Diaconis-
Stroock bound (Theorem 4.1) implies the following result.

Theorem 5.5 ([23, 45]) In notation above,1� �1 � 1� jRj� : �
Let � = Cayley(G;R) be a Cayley graph of group G

with a generating set R = S [ S�1, and d = jRj. For anyg 2 G, let `(g) denote a distance between id and g in �.
Define a ball of radius r, �r = fg 2 G j `(g) � rg. As
before, by Xt denote the t-th step of the random walk on �
starting at id.

The following result is a local version of Diaconis–
Stroock theorem.

Theorem 5.6 (Babai) In notation above, let
���4r�� �j�j=2, and let t be chosen uniformly from fk + 1; : : : ; lg,

where l � 712 r2d ln ���4r�� :
ThenP(Xt =2 �r) � 1=16.

We say that a set of generators S = fs1; : : : ; sng of
groupG is c-covering if each element of g can be written as
a product of si, where each generator is used at most c times.

Clearly, the diameter � of the corresponding Cayley graph
is at most c n.

We say that S is c-covering a subset B � G if for everyg 2 B there is a shortest decomposition g = si1 � � � sil such
that the path (id; g) 2 Cayley(G;S), and each generator gj
is used at most c times. Note that the c-covering generating
set S is the same as a set S which is c-covering the whole
group G.

Theorem 5.7 In notation above, let S be c-coveringB �G, and let
��B2�� � j�j=2. Let t be chosen uniformly fromf1; : : : ; lg, where l � 120 c d2 ln ��B2�� :

Then P(Xt =2 B) � 1=24.

The proof is a combination of the proof technique of
Diaconis-Stroock [23] and Babai approach in [4]. The com-
plete proof of Theorem 5.7 will be given elsewhere.

6. Construction of the multicommodity flow

Let� = �k(G) be the product replacement graph on gen-
erating k-tuples. We will construct a multicommodity flow
in � with special properties.

The construction will depend on the integersr; t;m; T;M . These will be chosen appropriately
later on. By N everywhere in this section we denoteN = Nk(G) = jNk(G)j.

Let (g) be a generating k-tuple. We will use [p; q] to de-
note a subset fgp; : : : ; gqg. We say “multiply (g) in placej by a random walk of length T on generators [p; q]”, to
denote the following procedure. We send a 1=(q � p + 1)
fraction of commodity from every (g) = (g1; : : : ; gk) 2Nk(G), where it is currently contained to all k-tuples of
the form (g1; : : : ; gj � g��i ; : : : ; gk), where i 2 fp; : : : ; qg,� 2 f0; 1g, j =2 fp; : : : ; qg. Repeat this for T steps. At the
end, 1=(q�p+1)T fraction of the commodity will be con-
tained in (g1; : : : ; gj � h; : : : ; gk), where h is given by the
lazy symmetric random walk onGwith [p; q] as a generating
set.

Similarly, we say “multiply (g) in place j by a ran-
dom subproduct on generators [p; q]”, to denote the proce-
dure when a 1=(q� p+1)q�p+1 fraction of commodity is
sent along the path (g1; : : : ; gk)! (g1; : : : ; gj �g�pp ; : : : ; gk)! (g1; : : : ; gj � g�pp � g�p+1p+1 ; : : : ; gk)! : : : ! (g1; : : : ; gj �h; : : : ; gk), where �j 2 f0; 1g, and h is given by the random
subproducts with [p; q] as a generating set.

Start with a generating k-tuple (g) 2 Nk(G). Assume
that hg1; : : : ; gri = G. Use the following steps to define a
multicommodity flow.
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0) Set 1=N units of commodity in (g).1) For every j = 1; : : : ; r, in this order, with probabil-
ity 2=3, multiply (g) in place j by a random subproduct
on generators [1; j � 1] [ [j + 1; k].2) Multiply (g) in place r +1 by a random walk on
generators [1; r], and of length l1 which is chosen at random
in f1; : : : ; Tg. Then multiply (g) in place r + 2 by a
random walk on generators [1; r+1],and of length l2, which
is chosen at random in f1; : : : ; Tg. Proceed in this manner
until multiplication of (g) in place r + t by a random
walk on generators [1; r + t� 1], and of length lt, which is
chosen at random in f1; : : : ; Tg.3) Multiply (g) in place j by a random walk of lengthM on generators [1; r+ t], for every j = r+ t+1; : : : ; r+t+m, in this order.4) Multiply (g) in place j by a random subproduct on
generators [r + t+ 1; r + t+m], for every j = 1; : : : ; r +t; r + t+m+ 1; : : : ; k, in this order.

Denote by F = �F (g);(h)� the flow defined in 1)� 4).
We think of F as of 1=N -commodity flow which sends 1=N
unit of commodity (g) to various generating k-tuples (h), so
each (h) 2 Nk(G) gets some (possibly zero) fraction of the
commodity.

Now consider a natural action of the symmetric group Sk
by permutation of generators in k-tuples. This induces an
action of Sk on edges in �k(G) :� : R�i;j ! R��(i);�(j); L�i;j ! L��(i);�(j) ;� : I�i;j ! I��(i);�(j); J�i;j ! J��(i);�(j) ;
where � 2 Sk. This action can be extended to all paths and
flows in �k(G).

Define a multicommodity flow X = �X(g);(h)� as a
flow which sends 1=N units of commodity from every (g)
to some k-tuples (h) according to the flowX(g);(h) = 1jSkj � [!2Sk !�1 � F ! (g);! (h);
One can think of performingX as of randomly choosing the
order on elements in f1; : : : ; kg before doing 1)� 4).

Consider an involution � which acts on edges in �k(G)
by reversing the order of multiplication:� : R�i;j $ L�i;j ; I�i;j $ J�i;j :
This action can be extended to paths and flows in �. Define
a flow Y = 12 �X + � �X�:
This corresponds to flipping a fair coin in advance and then
performing 1)�4), with the order of multiplication depend-
ing on the outcome.

Finally, define an involution � which acts on edges in �
by inverting their orientation. When � = �k(G) this action
is defined as follows:� : R�i;j $ R�i;j ; L�i;j $ L�i;j ; I�i;j $ I�i;j ; J�i;j $ J�i;j :
Clearly, this action can be also extend to paths and flows in�. Now define a flow Z = �Z(g);(h)� as follows:Z = 12 �Y + � � Y �:
We shall think of Z as of multicommodity flow which sends
val
�Z(g);(h)� units of commodity (g)� (h) from (g) to (h).
This completes the construction of the flow Z =Z(r; t;m; T;M). In the following sections we shall prove

that Z is nearly uniform (see below) and has a small con-
gestion. This in turn gives bounds on conductance and the
eigenvalue gap for the product replacement graph �k(G).
7. Congestion

This is normally the hardest quantity to calculate. It is
somewhat easier in our case.

Observe that the flow Z corresponds to a certain large set
of paths Z in �k(G). By construction, all path in Z have
length at mostL = `(Z) = r � (k � 1) + t � T +m �M + (k �m) �m;
where the summands corresponds to the steps 1)� 4) of the
construction.

Lemma 7.1 �(Z) � L.

Proof. Consider the labels of edges in a path  2 Z (see
section 2). Clearly, each path  2 Z is uniquely defined by
the labels and the starting point. Similarly, if an i-th point
of the path is given along with all the labels, one can recon-
struct the whole path as well.

Now, let e = �(g); (g0)� be an edge in �k(G). Suppose
we are also given a sequence of labels of edges of the path,
and we know that edge e is the i-th edge of the path. Then the
starting point (h) of the path is uniquely determined, and is
in one-to-one correspondence with (g). Therefore in �k(G)
the flow Z through any edge with the same label as e has
must be the same.

Now, by the symmetry in the definition of Z, this implies
that the flow through all edges of �k(G) is the same. In-
deed, the flow through R�i;j , L�i;j , I�i;j , J�i;j is the same for
all 1 � i; j � k due to the averaging over all permutations! 2 Sk. The flow through R�i;j , L�i;j is the same as through
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I�i;j , J�i;j by the symmetry in the definition of the subprod-
ucts and lazy random walks. The flow through R�i;j , I�i;j , is
the same as through L�i;j , J�i;j due to the symmetry in the
change of the order of multiplication, given by involution�. Finally, the symmetry between R�i;j andR�i;j , etc., comes
from the involution �.

Denote by D = deg(�k(G)) the total number of labels.
Then for congestion we have:�(Z) = ND maxe2�k(G)Z(e) = NDPe2�k(G)Z(e)j�k(G)j= cost(Z) � L;
where the last inequality follows from

cost(Z) � X(g);(h)2Nk(G) val(Z(g);(h)) � `(Z) � L:
This completes the proof. �
8. Uniformity

Recall that by construction flow Z is not uniform. The
proof of the Main Theorem relies on the fact that Z is nearly
uniform in the following precise sense.

Let f = f(fu;v) be a multicommodity flow in graph� = (V;E). We say that a flow f is "-uniform if for allu; v 2 V we have1� "N < val(fu;v) < 1 + "N ;
where N = jV j.

Theorem 8.1 Let k = 
(log jGj log log jGj), " = 1=4.
Then Z is "-uniform for certain parameters r; t;m; T;M ,
such that L = O(log4 jGj + k log k log jGj), where L =`(Z).

The proof of Theorem 8.1 is based on several interme-
diate results, each of them dealing with either random sub-
products or with random walks on finite groups. The param-
eters r : : :M will be explicit in the proof (see below) .

Let us deduce the main result of the paper from Theorems
4.1, 8.1. We the following elementary observation.

Proposition 8.2 Let f be a "-uniform multicommodity
flow in graph � = (V;E) given by a set of pathsX. Then1� �1 � 1� "�(f)`(X) :

Proof. Consider a flow bf obtained by decreasing flow
along paths, so that val( bfu;v) = (1�")=N , whereN = jV j.
Then 1=(1� ") � bf is a uniform flow with congestion�� 11� " � bf � = 11� " �( bf ) � 11� " �(f):
Now apply Theorem 4.1 to get the result. �

Proof of Main Theorem. From Proposition 8.1 and
Lemma 7.1, we conclude that 1� �1 � (1� ")=L2, whereL is as in section 7. Observe now that the Theorem follows
immediately from here and Theorem 8.1, given the choice of
parameters as in the proof of Theorem 8.1. We omit straight-
forward calculation. �
9. Proof of Theorem 8.1

From now on we will think of uniform flows in graphs
in terms of probability distributions of getting from a given
vertex to other vertices. The proof of Theorem 8.1 follows
from the following lemmas.

Lemma 9.1 Let (g) = (g1; : : : ; gk) be any generatingk-tuple. Consider r random subproducts defined ashi = g�i;11 � : : : � g�i;i�1i�1 � g�i;i+1i+1 � : : : � g�i;kk ;
where 1 � i � r, and �i;j 2 f0; 1g are determined
by independent coin flips. Let g0i = gi � (hi)�i , where�i 2 f0; 1g, P(�i = 1) = 23 , are determined by indepen-
dent Bernoulli trials. Then with probability> 1�"we havehg01; : : : ; g0ri = G, given r > 6 log jGj log(1=").

Lemma 9.2 Let k � r + t, and let (g) = (g1; : : : ; gk)
be a generating k-tuple such that hg1; : : : ; gri = G. As in
step 2), consider a succession of random walks of length T
starting at gj , r+1 � j � r+t, on a generating set [1; j�1]. Then, with probability > 1� ", the obtained generating
set [1; r + t] is 4-covering, given t > 48=(1 � ") log jGj,T > 480(r + t)2 log jGj.

Lemma 9.3 Let S = fg1; : : : ; gng be a 4-covering gen-
erating set. Denote by h, the results of a lazy symmetric ran-
dom walks of length M , starting at any g01; : : : ; g0m 2 G.
Denote by Q the distribution of h. ThenQ(h) � 1� "jGj ; for all h 2 G;
given M > 16n2�log jGj+ ln(1=")�.
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Lemma 9.4 Let (h1; : : : ; hm) be m elements indepen-
dently chosen from distribution Q on G, such that Q(h) �(1� ")=jGj for all h 2 G. By P denote the probability dis-
tribution of the random subproducts in hi. Then

P(h) � 1� �jGj ; for all h 2 G;
given m > 2 log jGj+ 3 log(1=�) + log(1=").

Proof of Theorem 8.1 Denote by (g(i)) =(g(i)1 ; : : : ; g(i)k ) a generating k-tuple obtained after appli-
cation of steps 1)� i), i = 1::4. Then, by Lemma 9.1, with
probability �1 > 1 � "1 we have hg(1)1 ; : : : ; g(1)r i = G. By
lemma 9.2, after step 2), with probability �2 > �1 �(1�"2),
we have the set S = fg(2)1 ; : : : ; g(2)r+tg is 4-covering. Fur-
ther, by Lemma 9.3, the probability distribution Q ofgj , r + t < j � r + t + m satisfies s(Q) < 1 � �3,
where �3 = �2(1 � "3). Finally, by Lemma 9.4, we haves(P) < 1� �4.

Now take " = 1=4, �4 = "=k. It suffices to have"i = "=6k. Take r = C1 log jGj log k, t = C2 log jGj,T = C3 log3 jGj log2 k, m = C4(log jGj + log k), M =C5 log2 jGj(log jGj + log k), where Ci are universal con-
stants chosen to satisfy the lemmas. ThenZ is indeed (1=4)-
uniform and L is as desired. �
10. Proof of Lemmas

It is instructive to start with a quick proof of Theorem 5.3
and Lemma 5.4, as the proof of Lemma 9.1 is completely
analogous. In our presentation we follow [16].

Proof of Lemma 5.4 Consider the smallest i such thatgi =2 H . Let u = g�11 � : : : � g�i�1i�1 , w = g�i+1i+1 � : : : � g�kk .
Now h = uh�ii w, and u 2 H . When w 2 H , with proba-
bility 1=2 we have �i = 1, and h =2 H . When w =2 H , with
probability 1=2 we have �i = 0, and h =2 H . Thus in either
case h =2 H with probability � 1=2. �

Proof of Theorem 5.3 Consider a sequence of subgroupsH0 = fidg, Hi+1 = hHi; hi+1i. By the lemma, for every i
we haveP(hi+1 =2 Hi) � 1=2, provided Hi 6= G. Thus we
need to estimate the probability that for r flips of a fair coin
there are � (1� ")r=2 heads. Now apply Chernoff bound.
We omit the easy details. �

Proof of Lemma 9.1 Let H ) G be a proper subgroup
of G = hg1; : : : ; gki. Consider a random subproduct g0i =gi � (hi)�i , where hi is as in the Lemma. By analogy with
the proof of Lemma 5.4, there are two cases. If gi =2 H ,

then with probability 1=3 we have �i = 0, and g0i = gi =2H . Assume gi 2 H . The random subproduct hi =2 H with
probability 1=2, and with probability 2=3 we have �i = 1.
Therefore with probability � 1=2 � 2=3 = 1=3, we haveg0i = gi � hi =2 H in this case.

Now, we showed that form every H ) G we have g0i =2H with probability� 1=3. The rest of the proof follows ver-
batim the proof of Theorem 5.3. �

Proof of Lemma 9.2 We follow the proof of Babai [4],
with several changes which will be indicated below.

Let Bj = fh = g�11 � � � � � g�jj ; �i 2 f0; 1g g, Cj =B�1j Bj . Now if gj+1 =2 Cj , then h1 � gj+1 6= h2 for
any h1; h2 2 Bj , and jBj+1j = 2 jBj j. Following Babai-
Szemerédi [9] (see also [4]), we call this cube-doubling.

We claim that after a random walk j+1-th place, gj+1 =2Cj with probability> 1=24. Here we cannot explicitly use
Babai Theorem 5.6 since the starting point of the walk can
be any group element.

Assume that P(Xt =2 B2j ) > ", where t is random inf1; : : : ; Tg, and Xt is a random walk on � starting at id.
We claim that P(aXt =2 Bj) > "=2, for any a 2 G, and t
random in f1; : : : ; 2Tg.

Indeed, if a 2 B, then with probability > " we haveaXt =2 a � Cj � Bj , and the claim follows. On the
other hand, let a =2 Bj . Consider the smallest i such thataXi 2 Bj . If i � T , from the previous observation, with
probability > " we have aXt =2 Bj , where t is random infi+1; : : : ; i+Tg. Otherwise aXt =2 Bj , where t is random
in f1; : : : ; Tg. We conclude that in both cases with prob-
ability > "=2 we have aXt =2 Bj , where t is random inf1; : : : ; i+ Tg. This completes proof of the claim.

From Theorem 5.6 and the above observation, we con-
clude that given T � Cn2 log jGj, we have gj =2 Cj with
probability > 1=48, where n = (r+ t) and C is a universal
constant. Proceed as in Babai [4] to finish the proof.

Proof of Lemma 9.3 This follows easily from Theorem
5.5. Indeed, consider a Cayley graph � = Cayley(G;R),
where R = S [ S�1. Then jRj � 2 jSj = 2n. Recall thatS is 4-covering. For every h 2 G consider a path betweenh and id in �, defined as in section 2, obtained from a de-
composition of h implied by 4-covering. Then the diameter�(�) � 4n. Also, in notation of section 2, � � 4. There-
fore by Theorem 5.51� �1 � 1� jRj� = 14 � 2n � 4n = 132n2 :
Finally,1jGj �Q(h) � �M1 � jGj � �1� 132n2�M jGj � "jGj ;
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for all h 2 G, givenM > 32n2(2 log jGj+log(1=")). This
implies the result. �

Proof of Lemma 9.4 The proof follows from the follow-
ing general observation (see[36]). Let Q be a distribution of
random subproducts h = g"11 � � � g"kk
where gi is chosen uniformly and independently in G. Fix
any x 2 G, and consider a distribution Q0 of random sub-
products h0 = g"11 � � � g"ii � x � g"i+1i+1 � � � g"kk
Then Q0(h) = Q(hx�1). Indeed, we haveh0 x�1 = g"11 � � � g"ii � �x g"i+1i+1 x�1� � � � �x g"kk x�1�= g"11 � � � g"ii � �x gi+1 x�1�"i+1 � � � �x gk x�1�"k ;
which implies the claim. In separation distance notation,
this implies that s(Q0) = s(Q).

Now let Q be a distribution on G such that s(Q) � ".
This implies that Q = (1 � ") � U + " � P for some distri-
bution Q1. Every subproduct h of elements chosen from Q
can be written as a product of gi, xj , where gi are chosen
uniformly and independently, and xj are chosen indepen-
dently from Q1. Take the length of subproducts to be m >k(1+�)=(1�"). Then, by Chernoff bound, there are at leastk elements gi in h with probability p > 1� e��2(1�")m=2.

Now assume that h indeed contains� k elements gi. We
can use the “pulling through” method as above for all ele-
ments xj . Denote by R the distribution of random subprod-
ucts of length k, sampled from uniform distribution, and by
P the distribution of subproducts of length m sampled from
Q, s(Q) � ". We obtain s(P) � p � s(R). Now apply Theo-
rem 5.2 to get the result. �
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