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Abstract

The product replacement algorithm is a heuristic de-
signed to generate random group elements. The idea is to
run a randomwalk on generating k-tuples of the group, and
then output a random component. The algorithm was de-
signed by Leedham-Green and Soicher ([31]), and further
investigated in [12]. It was found to have an outstanding
performance, much better than the the previously known al-
gorithms (see[12, 22, 26]). The algorithmis now included
in two major group algebra packages GAP [42] and
MAGMA [10].

In spite of the many serious attempts and partial results,
(see[6, 14, 15, 21, 22, 32, 39, 40]), the analysis of the al-
gorithm remains difficult at best. For small values of k
even graph connectivity becomes a serious obstacle (see
[19, 37, 39, 40]). Themost general resultsaredueto Diaco-
nis and Saloff-Coste [ 22], who used a state of the art ana-
Iytic techniqueto abtain polynomial boundsin special cases,
and (sub)-exponential boundsin general case. Themainre-
sult of this paper is a polynomial upper bound for the cost
of the algorithm, provided & is large enough.

1. Introduction

The product replacement algorithmis defined as follows
([12]). Given afinite group G, let N} (G) be a set of k-
tuples (9) = (¢1,-..,9x) Of elements of G, such that
{(91,---,91) = G. We call elements of Ny (G) the gener-
ating k-tuples. Given agenerating k-tuple (g1, - . ., g ), de-
fineamove on it asfollows. Choose uniformly apair (i, 7),
suchthat 1 < i # j < k, and apply one of the following

four operations with equal probability:
Rfj : (g]7"'7gi7"'7gk) — (g'[:"':gi'gji]:"'agk)

79/@) — (gla"'
* Supported by the NSF Postdoctoral Research Fellowship.

Lf] : (91791

Note that these moves map a generating k-tuple into a gen-
erating k-tuple. Now apply these movest times (the choice
of the move must be uniform and independent at each step),
and return a random component of the resulting generat-
ing k-tuple. This is the desired “random” element of the
group G.

Another way to describe the algorithm, is to define on
N (G) astructureof agraphinduced by maps R;"; and L.
This makes V. (G) into a4k(k — 1)-regular graph with no
orientation on edges, but with loopswhen k& > d(G), where
d(@G) isthe minimal number of generatorsof GG. Now theal-
gorithm consists of running anearest neighbor random walk
onthisgraph (for ¢ steps) and returning arandom component
of the stopping state. We refer to this random walk as the
product replacement randomwalk W = Wy (G).

For atechnical reason whichwill beclear later, itisuseful
to define a lazy product replacement random walk. Flip a
fair coin at every walk step and if heads, do as above, and if
tails stay put. Thiscan slow down thewalk by afactor of at
most 2, but helpsavoid parity problemswith the graph being
bipartite or nearly bipartite (see [13]).

About presentation of groups. We assume that the group
isgiven as ablack box group, which meansthat thereisan
oracle which can multiply elements, invert them, and com-
pare them with identity (see[6]). We will not use the latter
operation. The group isthen defined by a set of generators
(91, ---,9r). Now, in the algorithm one should take k& > r
andset g,y == gp = id(see[12]).

A few words about the parameters k£ and ¢. In the origi-
nal paper [12] the authors showed that when k& > 21og, |G|
the product replacement graph I', (G) of moves on gener-
ating k-tuples, is (strongly) connected. It was further noted
in [6] that when & > 2log, |G| the diameter of T'x(G) is
O(klog|G|).

Let P be adistribution on set X, and let U be a uniform
distribution. Definethe total variation distance asfollows:

1 1
P-Uly=3 Y P@) -
reX

Itiseasy toseethat 0 < [|P— U ||ty < 1.
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Main Theorem Let G be a finite group, and let & =
Q(log |G| loglog |G|. Denoteby Q' theprobability distribu-
tion of the ¢-th step of the lazy product replacement random
walk. Then

IQ" ~ Ullty < e, given

t > C (log* |G| log k+klog klog |G|)2 klog|G| log(1/e),

where C isa universal constant.

In other words, when k = 6(log |G|loglog |G]), the
mixingtime of thewalk is O (log” |G|(loglog |G|)®). This
isasignificant improvement over the general resultsin[22],
which involve a nasty parameter A(G, k) defined as the
largest diameter of the Cayley graph of G on k generators.
On the other hand, the bounds we obtain are quite worse
when compared to the bound in [32] in special cases of
abelian and nilpotent groups. We elaborate further on pre-
vious results in the next section.

Before we conclude, let us emphasize however that the
Main Theorem partly closesthe gap between theoretical and
practical results.

2. Previousresults and Applications

An extensive review of the previous results and related
subjectscan befoundin areview article[40]. Thuswe shall
restrict ourselvesto avery brief sketch.

In[14, 15] the asymptotic for the mixing timewhen & —
oo is obtained. While somewhat better than ours (we get
O(k*log® k) versus O(k*log k) known bound), the con-
stants implied by O(+) notation in their case were roughly
|G|%), and thus inferior to our poly-log constants.

In an analytically elaborate papers [21, 22], the authors
obtained general bounds, which seem subexponential for
certain abelian and nilpotent groups, and conjectured poly-
nomial for simple groups. In[22] various specific examples
were considered, but even for all abelian groupsthe authors
do not obtain polynomial bounds. This was established by
theauthorin [39], and thenimproved in [32] by an algebraic
technique. In adifferent direction, it was shown in[32] that
when k isfixed and |G| — oo, the mixing time of the walk
is O(log |G|), when G is nilpotent of bounded class. This
suggests that perhaps our polynomial but admittedly weak
bounds might be improved in the future.

A few words about the applications. Starting with the
first algorithms of Sims [44], a large number of group al-
gorithms has been developed. Recently, various random-
ized algorithms has been introduced in a generality of ma-
trix and black box groups (see eg. [11, 29, 33]), which
assume an access to (nearly) uniform group elements (see
[6, 28]). Thisassumption isjustified by a pioneer work of
Babai [4], who gave thefirst polynomial time algorithm for
generation of random group elements. His algorithms runs

in O(log” |G) time, which is quite superior when compared
to our O*(log” |G|) bound.

In practice, however, only the product replacement al-
gorithm is used as it exhibited a remarkable performance
([12, 26, 31]). It is natural to conjecture that the algorithm
remains polynomial even for relatively small k. This was
partly justified in [32] by reducing the problem to a long
standing open algebraic problem. It is nevertheless clear
that one can alwaysadd trivial elementstofill therest of the
k-tuple even if a given generating set is small®. This shows
that the algorithm has arigorously polynomial modification.

3. Proof outline

In a nutshell, the main underlying idea is to “emulate”
the analysis of Babai algorithm in the case of product re-
placement. While we do not wish to give a general method
for such “emulation”, it isavailable indeed, and will be pre-
sented in the future publication. Theideais somewhat tech-
nical, so for the sake of brevity we do not spell it out in this
case, but rather present an independent proof, which we out-
line below.

The proof is based on the use of a well known multi-
commodity flow technique, basic results of which werecall
below in section 4. Roughly, one wishes to send one unit
of commodity between every pair of verticesin a graph so
as to minimize congestion along the edges. The congestion
achieved gives a bound on the mixing time (see e.g. [45]).

Now, the congtruction of the multicommodity flow is
based on a modified version of the Babai's algorithm.
Speaking loosely, one considersthefirst vertex of the graph
as an input in Babai’s agorithm, and lets the commodity
move along the edges according to the algorithm operations.
At the end, the distribution of commodities is somewhat
nonuniform, so a standard fill up argument is used (cf. [1]).

Unfortunately a good portion of the analysisin [4] can’t
be trandated to our somewhat more general setting. The
problem is that our starting vertex can be arbitrary and we
have a version of reversibility problem, not unlike that in
guantum computing (cf. [30]). An analytic approach (cf.
[23]), combined with various probabilistic bounds, resolves
the problem. As a byproduct, we obtain a better bound
O(log* |G]) for the (modified) Babai algorithm. This will
beincluded in the full version of the paper.

The rest of the paper is constructed as follows. In sec-
tions 4, 5 we present some background material on multi-
commodity flows and random walks on groups. While most
definitions are standard, some important notation are intro-
duced and a few important technical results are recalled.

Section 6 is the key section where we introduce a mul-
ticommodity flow used in the proof main Theorem. In sec-

1Thisis aso donein practice (see [12, 31])
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tions 7, 8 the congestion of the flow is computed based on
akey technical Theorem 8.1, which is roughly analogousto
the main result of Babai [4] (and stronger in effect). Finally,
Theorem 8.1 is proved in sections 9, 10.

4. Random walkson graphs

By I = (V, E) wedenote oriented graphs, possibly with
loops, on aset of vertices V' with aset of edges E. For con-
venience, wewritee € T inplaceof e € E. A nearest
neighbor randomwalk ingraph I starting at v € V, denotes
W = W, (), is defined as a walk which starts at v and at
each step moves along a uniformly chosen edge leaving .

We say that T" is symmetric if the number of edges
(v,w) € T isequa to the number of edges (w,v) € T.
Graph ' iscalled D-regular if every vertex w € V hasthe
samein-degreeand out-degreedeg(w). Fromnow onweal-
ways assume that our graph T" is symmetric and D-regular.

Let X beafinite set, and let P be a probability distribu-
tion on X. For the rest of the paper U will always denote a
uniform distribution. There are several ways to measure a
distance between Q and U (cf. [2]). Firgt, definethe total
variation distance :

P-Ullty =
| lltv max

TGX

whereP(B) = > 5 P(x).
Similarly, definethe separation distance :

s(P) = | X| - max<|)1( P(m)).

One can think of s(P) as of one-sided /.. -distance. Note
that 0 < ||P— Uljty < s(P) < 1.

Denote by Q! the probability distribution of the ¢-th step
of thewalk W, (I"). If I' issymmetric, connected, and is not
bipartite, it iswell known that Q¢ (w) — 1/N, where N =
|V|. By A = (ay,,) denotethetransition matrix of thewalk:
Ay = #{(v,w) €T}/deg(v). By 1 =X >\ 2> Xy >

-+ > Any_1 > —1denotetheeigenvaluesof A, where N =
[V]. Let p = max{|Ai],|An_1|} betheeigenvaluegap. It
is easy to see that

1
QLw) | <t N Q) Ulhy <4t N,

foral v € V (seeeg. [2]). When the walk is lazy (see
introduction), wehave Ay 1 > 0, u = A1, and

1
QL) — | < XN, Q) Ul <X N

foralve V.

|B| 1
P(B) — — |,
| X| Z X

Let ' = (V,E) be an oriented graph, u,v € V. A
u — v flow f*? isafunction on the edges of T', such that
f*“?(e) > 0foraleeI'and

S oG =Y (i g) fordl i € Vi # uv.
J J

The value of aflow isdefined as
=Y UG =) F (s g).
J J

A multicommodity flow isacollection f = (f™")
for all pairsof verticesu # v. We say that multicommaodity
flow f is uniform if

> va(f)

One can think of aflow f** asof away to send val(f*")
units of (u, v) commodity from u to v through edges of T'.
Similarly, a uniform flow f isaway to send 1/N units of
each of the N2 commoditiesthrough edgesof T'.

Oneway to construct a uniform multicommodity flow is
tousepathsinIT'. Let X*-* beaset of simple paths between
u and v. Take

11 (e) =

= va(fr) = % foralu e V.

1

[y € X" [y 3
N2 . |X“’v| ‘{’y "y e}‘

forany e € T'. Now, if acollection of paths X = (X"") is
given, this construction defines a multicommaodity flow. We
referto [45] for theinverse procedureand further details. By
£(X') denote the maximum length of pathsin X.

Lete € E beanedgeina D-regular graph T'. Define

flowthough e as
)= ")

Definethe cost of aflow as
cost(f) =Y fle
eel’

Observe now that for a uniform flow f which corresponds
to set of path X the cost is given by

cost(f) =) fle) < > UX)-val(u,v)
ecl u,veV
< N?24(X) % ={(X).

If al pathsin X have the same length, the above inequality
becomes an equality.

Define the congestion p(f) to bethe scaled maximum
flow through edgesinT':

p(f) =N-D-max fe).
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A conductance ® = ®(T") of agraph T isdefined by

[E(X, VA X))

é =
D-[X|

min
XCV, 1<|X|<N/2
where N = |V|, E(X,Y) = {e = (v,w) € T'|v €

X,w € Y}. A well known bound of Jerrum and Sinclair
[27] (seedlso [2, 23, 45]) states that

(DZ
- S1-M <20

Let f = (f*") beauniform multicommodity flow with
maximal congestion p(f), ina D-regular graph T'. Then

1
2p(f)
Now, if f isauniform multicommodity flow with small con-

gestion, one can obtain bounds on the eigenvalue gap via
bounds on conductance:

® >

1
1-A2>
82(f)
In general case, a shortcut was discovered by Diaconis and
Stroock [23] (seedso[2, 20, 45]).

Theorem 4.1 ([23]) Let f beauniform multicommodity
flow, given by a set of paths X. Then

e R

5. Probability on groups

Let G be afinite group. By d(G) denote the minimum
number of generatorsof G. A generating setiscalled redun-
dant if one generator can be omitted so that the remaining
generators still generate G. By d(G') denote the maximum
size of the nonredundant generating set. Note that

1 <d(G) < d(G) < 5(G) <log, |G,

where s(G) isthelength of thelongest subgroup chainin G.

We denote generating k-tuplesby (g9) = (g1,---,9%),
where (g1, ..., gr) = G, k > d(G). The set of generating
k- tupIeS|sdenotedbyNk(G). Also, let Ny (G) = [Nk (G)|
denote the number of generating k-tuples of G.

Theorem 5.1 ([37]) For any finitegroup G, 1 > € > 0,
we have Ni(G) > (1 —¢) - |G|, given k > log, |G| +
2 + log, 1/e.

A weaker version of the result in Theorem 5.1, with
k> 2log, |G| + Q(1) follows easily from P(g; ¢
(91,...,9i—1)) > 1/2. We refer to [37] for references and
generalizations.

By I'x.(G) denote the product replacement graph with
edges defined by the moves R;;, L7, I}; and J7,
where R, and L;; areasintheintroduction, 1 <i #
j < mn,and Ii I3 aredeﬂnedasloopsm [ (G). Wewill
say that the edg% corr%pondl ng to the same move have the
same |abel.

Observe now that the lazy product replacement random
walk, denotes W, (G), can be defined now as the nearest
neighbor randomwalk on T'x (G).

Let G beafinitegroup, (9) = (g1,...,gx) € G* beany
k-tuple. Define random subproducts of (g) asfollows:

h=g"- ... g},

wheree; € {0,1},1 < i < k, are chosen by independent
flipsof afair coin (see[25]). Notethat distribution of A may
depend on the order of elementsin a k-tuple.

Theorem 5.2 ([25]) Let (¢g) bearandomk-tuple, chosen
uniformly fromG*. By P(4) denote be the probability distri-
bution on G of the random subproducts of (g). Then for all
€,0 > 0 we have

P | max
hea

1 €
Py(h)— —| < — 1-—46,
0| <) > 10

where the probability P(-) is over all (g), and & >
2 log, |G| + 2 log,(1/€) + log,(1/96).

Theorem 5.3([8, 16, 17]) Let hy, ..., h, beacollection
of independently chosen random subproducts of generators.
Then (hi,...,h,) = G with probability > 1 — e~="7/8,
givenr > 2log, |G|/(1 —€),1 >¢e > 0.

We will need to use a dlightly modified version of the
Theorem. Recall that the proof is based on the following
well known Lemma.

Lemma 5.4 ([8, 16, 17]) Let H < G be a proper sub-
group of G = (91 ..... ,gr). Then a random subproduct
h=gy"- ... g} ¢ H with probability > 1/2.

LetS = {g1,...,9x} beagenerating set of G. Define
asymmetric randomwalk on G of length ¢ to be arandom
product

h:gfll- -gftl,
and alazy symmetric randomwalk on G of length¢ tobea
random product

W= (g:")"

()"
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wherei; € {1,...,k},¢; € {0,1},1 < j < ¢, and signs
are chosen uniformly and independently. One can think of
this random walk as of lazy nearest neighbor random walk
on the Cayley graph T' = Cayley(G, R) of G with a gener-
atingset R=SUS~".

Denote by @Q? the probability distribution of h as above.
From the above, it is easy to see that Q(h) — 1/|G| as
t — oo, foral h € G. A general bound on the rate of con-
vergence can be obtained as follows.

Construct aauniform multicommodity flow f asfollows.
Let S be the generating set as above. For every elements
w € G fix ashortest decomposition w = s; - $3... 5y,
where s; € S. Now send 1/|G|? of acommodity g — h
from g to h viaa path v, which corresponds to the decom-
position of w = g~ A:

v(g,h) = (g = gs1 — gs1$2 = -+ — gs152...8 = h).

For the conductance, the Jerrum-Sinclair bound gives:

1
*Z SE
where ) isthe maximal number of times generator s appears
in the decomposition y(w), maximumtakenover al s € S,
w € G. Notethatn < A, where A = A(G,R) is
the diameter of T’ = Cayley(G, R). Further, the Diaconis-
Stroock bound (Theorem 4.1) implies the following result.

Theorem 5.5 ([23, 45]) In notation above,

1
1= > ——.
"= p|R[A

Let ' = Cayley(G, R) be a Cayley graph of group G
with ageneratingset R = SU S~', andd = |R|. For any
g € G, let £(g) denote a distance betweenid and g in T
Define a ball of radius r, I'" = {g € G |{(g) < r}. As
before, by X; denote the ¢-th step of the random walk on I"
starting at id.

The following result is a local version of Diaconis—
Stroock theorem.

Theorem 5.6 (Babai) In notation above, let |I"| <
IT|/2, and let ¢ be chosen uniformly from {k + 1,...,1},
where

1> 7127°d In [T

ThenP(X, ¢ I'") > 1/16.
We say that a set of generators S = {sy,...,s,} Of

group G isc-covering if each element of g can bewrittenas
aproduct of s;, whereeach generator isused at most ¢ times.

Clearly, the diameter A of the corresponding Cayley graph
isat most cn.

We say that S isc-covering asubset B C G if for every
g € B thereisashortest decomposition g = s;, - - - s;, Such
that thepath~(id, g) € Cayley(G, S), and each generator g;
isused at most ¢ times. Note that the c-covering generating
set S isthe same as aset S which is c-covering the whole
group G.

Theorem 5.7 Innotation above, et S bec-covering B C
G, and let |[B*| < |T|/2. Let t be chosen uniformly from
{1,....,1}, where

1>120cd® In|B?|.

Then P(X, ¢ B) > 1/24.

The proof is a combination of the proof technique of
Diaconis-Stroock [23] and Babai approachin[4]. The com-
plete proof of Theorem 5.7 will be given elsewhere.

6. Construction of the multicommodity flow

LetT = I'(G) betheproduct replacement graph on gen-
erating k-tuples. We will construct a multicommodity flow
inT with special properties.

The construction will depend on the integers
rot,m, T, M. These will be chosen appropriately
later on. By N everywhere in this section we denote
N = Ni(G) = [N4(G)].

Let (g) beagenerating k-tuple. We will use [p, ¢] to de-
noteasubset {g,, ..., g,}. Wesay “multiply (g) inplace

j by arandomwalk of length T on generators [p, ¢|”, to
denote the following procedure. Wesendal/(q — p + 1)

theform (g1,...,9; - 95 ..., g1), wherei € {p,...,q},
e €40,1},7 ¢ {p,...,q}. Repeat thisfor T steps. At the
end, 1/(q—p+1)T fraction of the commodity will be con-
tainedin (g1,...,9; - h,..., gx), where h is given by the
lazy symmetric randomwalk on G with [p, q] asagenerating
Set.

Similarly, wesay “multiply (¢g) inplace j byaran-
dom subproduct on generators|p, ¢]”, to denote the proce-
durewhenal/(q — p+ 1)~ P*! fraction of commodity is
sentaongthepath (g1, ..., g1) = (91,195 95 - - > Gr)
= g1y 195 " k) = = (g1, 05
h,...,gr), wheree; € {0,1}, and h isgiven by therandom
subproducts with [p, g] as a generating set.

Start with a generating k-tuple (g) € Ni(G). Assume
that (gi1,...,9.) = G. Usethefollowing stepsto define a
multicommodity flow.
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0) Set 1/N units of commodity in (g).

1) Forevery j = 1,...,r, inthisorder, with probabil-
ity 2/3, multiply (g) in place j by arandom subproduct
ongenerators|[1,j — 1] U [j + 1, k].

2) Multiply (g) inplace r+1 by arandomwalk on
generators[1, r], and of length ; whichischosen at random
in{1,...,7}. Thenmultiply (g) inplace r +2 bya
randomwalk on generators[1, r + 1],and of length /5, which
is chosen at randomin {1,...,7'}. Proceed in this manner
until multiplication of (g) inplace r +t by arandom
walk on generators [1,r + ¢t — 1], and of length I;, which is
chosen at randomin {1,...,T}.

3) Multiply (g) inplace j by arandomwalk of length
M ongenerators|[1,r + ], forevery j =r+t+1,...,r +
t + m, in this order.

4) Multiply (g¢) inplacej by arandom subproducton
generators[r + ¢+ 1,7+t +m], foreveryj =1,...,7 +
t.,r+t+m+1,...,k, inthisorder.

Denoteby F = (F(9-(")) theflow definedin 1) — 4).
Wethink of F asof 1/N-commodity flow which sends1/N
unit of commodity (g) to variousgenerating k-tuples(h), so
each (h) € N (G) gets some (possibly zero) fraction of the
commodity.

Now consider anatural action of the symmetric group Sy,
by permutation of generatorsin k-tuples. Thisinduces an
action of Sy onedgesin['(G) :

. + + + +
o By = Botoer Lis = Lot0t) -
. + + + +
o Iy 2 L6y oy i = ot e

where o € Sj. Thisaction can be extended to all paths and
flowsin 'y (G).

Define a multicommodity flow X = (X)) asa
flow which sends 1/N units of commodity from every (g)
to some k-tuples (h) according to the flow

(9 (h) —

One can think of performing X as of randomly choosing the
order on elementsin {1, ..., k} beforedoing 1) — 4).

Consider an involution = which acts on edgesin ' (G)
by reversing the order of multiplication:

. pE + £ +
TR e L, I o J

This action can be extended to paths and flowsin T'. Define
aflow

V=2 (X4 X).

This correspondsto flipping afair coin in advance and then
performing 1) —4), with the order of multiplication depend-
ing on the outcome.

Finally, define an involution : which acts on edgesin T’
by inverting their orientation. When T’ = T';,(G) thisaction
is defined asfollows:

Vi RE o R, LY, o LT, LS o L5, J5 o J7
Clearly, this action can be also extend to paths and flowsin
I. Now defineaflow Z = (Z(9):(")) asfollows:

Z=5(Y+1Y).

We shall thi nk of Z asof multicommaodity flow which sends
val (Z(9):(1)) units of commodity (g) — (k) from (g) to (h).

This completes the construction of the flow Z =
Z(r,t,m,T, M). Inthe following sections we shall prove
that Z is nearly uniform (see below) and has a small con-
gestion. Thisin turn gives bounds on conductance and the
eigenvalue gap for the product replacement graph T'y,(G).

7. Congestion

This is normally the hardest quantity to calculate. It is
somewhat easier in our case.

Observethat theflow Z correspondsto acertain large set
of paths Z in T';,(G). By construction, all path in Z have
length at most

L=0Z)=r (k-

where the summands correspondsto the steps 1) —
construction.

D+t T+m-M+ (k—m)-m,

4) of the

Lemma7.1 p(Z) < L.

Proof. Consider thelabelsof edgesinapath v € Z (see
section 2). Clearly, each path v € Z isuniquely defined by
the labels and the starting point. Similarly, if an i-th point
of the path is given along with all the labels, one can recon-
struct the whole path as well.

Now, lete = ((g), (¢')) bean edgein T, (G). Suppose
we are also given a sequence of labels of edges of the path,
andweknow that edgee isthei-th edge of thepath. Thenthe
starting point (k) of the path is uniquely determined, and is
in one-to-one correspondencewith (g). Thereforein Iy, (G)
the flow Z through any edge with the same label as e has
must be the same.

Now, by the symmetry in the definition of Z, thisimplies
that the flow through all edgeﬁ of I'x(G) isthe same. In-
deed, the flow through R}, L, I;5;, J;; isthe same for
all<i,j <kdueto the averaging over all permutations

w € Si. Theflow through R;;, L, isthe same asthrough
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175, Ji%; by the symmetry in the definition of the subprod-

ucts and lazy random walks. Theflow through R, 1%, is

the same as through L3, J;; due to the symmetry in the
change of the order of multiplication, given by involution
. Finally, the symmetry between Rf] and RTJ etc., comes
fromthe involution ..

Denote by D = deg(I'x(G)) the total number of labels.

Then for congestion we have:

p(Z)=ND max Z(e)=ND @]

e€ly (G)
=cost(Z) < L,

where the last inequality follows from

cost(7) < . va(z9 ™M) <uz) <L
(9),(h)ENK(G)

This completesthe proof. [

8. Uniformity

Recall that by construction flow Z is not uniform. The
proof of the Main Theoremrelieson thefact that 7 is nearly
uniformin the following precise sense.

Let f = f(f*“?) beamulticommodity flow in graph
' = (V,E). Wesay that aflow f is e-uniform if for all
u,v € V. wehave

1—¢ , 1+¢
val(f*“? S
o <va(f*) < ——

where N = |V|.

Theorem 8.1 Let k£ = Q(log|G|loglog |G]), e = 1/4.
Then Z is e-uniform for certain parameters r, t,m, T, M,
suchthat L = O(log" |G| + klogklog|G|), where L =
(7).

The proof of Theorem 8.1 is based on several interme-
diate results, each of them dealing with either random sub-
productsor with random walkson finite groups. The param-
etersr ... M will be explicit in the proof (see below) .

L et usdeducethe main result of the paper from Theorems
4.1, 8.1. We the following elementary observation.

Proposition 8.2 Let f be a e-uniform multicommodity
flowingraphT = (V, E) given by a set of paths X. Then

1—c¢

ST

Proof. Consider aﬂgw f obtained by decreasing flow
along paths, sothatval(f“") = (1—¢)/N,where N = |V].
Then1/(1—¢) - f isauniform flow with congestion

1 ~ 1 ~ 1
p(l—g'f> =12 P < g plf).

Now apply Theorem 4.1 to get theresult. O

Proof of Main Theorem.  From Proposition 8.1 and
Lemma7.1, weconcludethat 1 — \; > (1 —¢)/L?, where
Lisasin section 7. Observe now that the Theorem follows
immediately from hereand Theorem 8.1, given the choice of
parametersasin the proof of Theorem8.1. We omit straight-
forward calculation. O

9. Proof of Theorem 8.1

From now on we will think of uniform flows in graphs
in terms of probability distributions of getting from a given
vertex to other vertices. The proof of Theorem 8.1 follows
from the following lemmas.

Lemma 9.1l Let (g) = (¢1,--.,9x) be any generating
k-tuple. Consider r random subproducts defined as

€41

hi =g,

gt g g
where 1 < ¢ < r,and ¢ ; € {0,1} are determined
by independent coin flips. Let g¢; = g¢; - (hi)", where
v; € {0,1}, P(v; = 1) = %, are determined by indepen-
dent Bernoulli trials. Thenwith probability > 1 — e we have
(91,--.,9.) = G, givenr > 6log|G|log(1/e).

Lemma9.2 Letk > r +t,andlet (g9) = (91,---,9%)
be a generating k-tuple such that (¢1,...,9,) = G. Asin
step 2), consider a succession of randomwalks of length T
startingat g;, r+1 < j < r+t,onageneratingset [1,j—
1]. Then, with probability > 1 — ¢, the obtained generating
set [1,r + t] is4-covering, givent > 48/(1 — ¢)log |G,
T > 480(r + t)*log|G].

Lemma9.3 LetS = {gi,...,9n} bea4-covering gen-
erating set. Denoteby h, theresultsof alazy symmetric ran-
dom walks of length A/, starting at any ¢1,...,9,, € G.

Denote by @ the distribution of h. Then ‘

1—c¢

Q2

forall h € G,

given M > 16n?(log |G| + In(1/g)).

www.manaraa.com



Lemma 9.4 Let (hy,...,h,) bem eements indepen-
dently chosen from distribution @ on GG, such that Q(h) >
(1 —¢)/|G| for al h € G. By P denote the probability dis-
tribution of the random subproductsin h;. Then

P(h) > 1-9

> , foralhe @G,
G|

given m > 2log |G| + 31log(1/6) + log(1/e).

Proof of Theorem 8.1 Denote by (¢(9) =
(g](”, . ,g,(:’)) a generating k-tuple obtained after appli-
cation of steps1) — i), = 1..4. Then, by Lemma9.1, with
probability 31 > 1 — e wehave (g\”, ... ¢'V) = G. By
lemma9.2, after step 2), with probability 8o > 31 - (1 —¢2),
we havetheset S = {gf), e ,gfi)t} is 4-covering. Fur-
ther, by Lemma 9.3, the probability distribution Q of
gj, v+t < j <r+t+ msaisfiess(Q) < 1 — fs,
where 83 = (B2(1 — e3). Findly, by Lemma 9.4, we have
S(P) <1-—p4.

Now takee = 1/4, B4 = e/k. It suffices to have
g; = €/6k. Taker = C;log|G|logk,t = Cylog|G,
T = C3log® |G|log® k, m = Cy(log|G| + logk), M =
Cslog” |G| (log |G| + log k), where C; are universal con-
stants chosen to satisfy thelemmas. Then Z isindeed (1/4)-
uniformand L isasdesired. [

10. Proof of Lemmas

Itisinstructiveto start with aquick proof of Theorem 5.3
and Lemma 5.4, as the proof of Lemma 9.1 is completely
analogous. In our presentation we follow [16].

Proof of Lemma 5.4 Consider the smallest i such that
gi ¢ H.Letu = gi' - ... -g;"'yw = gt - gt
Now h = uwhiw,andu € H. Whenw € H, with proba-
bility 1/2 wehavee; = 1,andh ¢ H. Whenw ¢ H, with
probability 1/2 wehavee; = 0,and h ¢ H. Thusin either
case h ¢ H with probability > 1/2. O

Proof of Theorem5.3 Consider a sequence of subgroups
Hy = {id}, Hi11 = (H;, hiy1). By thelemma, for every i
wehaveP (h;y1 ¢ H;) > 1/2,provided H; # G. Thuswe
need to estimate the probability that for = flips of afair coin
thereare < (1 — ¢)r/2 heads. Now apply Chernoff bound.
We omit the easy details. O

Proof of Lemma 9.1 Let H D G be aproper subgroup
of G = {(g1,...,gx). Consider arandom subproduct g, =
gi - (h;)"*, where h; isasin the Lemma. By anaogy with
the proof of Lemma 5.4, there are two cases. If g; ¢ H,

then with probability 1/3 wehaver; = 0,and g} = g; ¢
H. Assume g; € H. Therandom subproduct h; ¢ H with
probability 1/2, and with probability 2/3 we havev; = 1.
Therefore with probability > 1/2 - 2/3 = 1/3, we have
9; = gi-hi ¢ Hinthiscase.

Now, we showed that form every H D G we have g; ¢
H with probability > 1/3. Therest of the proof followsver-
batim the proof of Theorem 5.3. O

Proof of Lemma 9.2 We follow the proof of Babai [4],
with several changeswhich will be indicated below.

Let Bj = {h = gi" ----- g7, & € {0,1}},C; =
B; ' Bj. Nowif gj11 ¢ Cj, thenhy - g; 11 # hy for
any hi,hs € Bj, and |Bj;1| = 2|B;|. Following Babai-
Szemerédi [9] (see dso [4]), we call this cube-doubling.

We claimthat after arandomwalk j + 1-th place, ;41 ¢
C; with probability > 1/24. Herewe cannot explicitly use
Babai Theorem 5.6 since the starting point of the walk can
be any group element.

Assumethat P(X; ¢ B}) > ¢, wheret israndomin
{1,...,T}, and X; isarandomwalk on I starting at id.
Weclaimthat P(aX; ¢ B;) >¢/2,foranya € G,andt
randomin {1,...,2T}.

Indeed, if a € B, then with probability > & we have
aX; ¢ a-C; D Bj, andthe claim follows. On the
other hand, let a ¢ B,. Consider the smallest i such that
aX; € B;. If i < T, from the previous observation, with
probability > ¢ we have aX; ¢ B;, where ¢ israndomin
{i+1,...,i+T}. OtherwiseaX; ¢ B;, wheret israndom

in {1,...,7}. We conclude that in both cases with prob-
ability > ¢/2 we have aX; ¢ B;, wheret israndom in
{1,...,i+ T}. Thiscompletes proof of the claim.

From Theorem 5.6 and the above observation, we con-
clude that given T' < Cn?log |G|, we have g; ¢ C; with
probability > 1/48, wheren = (r 4+ ¢) and C isauniversal
constant. Proceed asin Babai [4] to finish the proof.

Proof of Lemma 9.3 Thisfollows easily from Theorem
5.5. Indeed, consider a Cayley graph T’ = Cayley(G, R),
where R = SUS~'. Then |R| < 21|S| = 2n. Recal that
S is4-covering. For every h € GG consider a path between
handidinT, defined as in section 2, obtained from a de-
composition of h implied by 4-covering. Then the diameter
A(T') < 4n. Also, in notation of section 2, < 4. There-
fore by Theorem 5.5

VS S 1 1
"SUIRIA T 4 2n-4n  32n%
Finally,
Loy <av.qi< (1- -2 M|G|< °
|G R = 32n?2 =G|’
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foral h € G,given M > 32n?(2log |G| +log(1/e)). This
impliesthe result. O

Proof of Lemma 9.4 The proof follows from the follow-
ing general observation (see[36]). Let Q be adistribution of
random subproducts

h:g?...gzk

where g; is chosen uniformly and independently in G. Fix
any ¢z € (G, and consider a distribution @' of random sub-
products

Eit1

ThenQ'(h) = Q(hz~!). Indeed, we have
Eit1

ha=t=gi g (”’gz’ﬂ ”771) (Tqik '7"71)

1)5z’+1

:gi1..-gfi.(mgi+1x7 -..(mgkmf'l)ﬂc:

which implies the claim. In separation distance notation,
thisimpliesthat s(Q') = s(Q).

Now let Q be a distribution on G such that s(Q) < e.
Thisimpliesthat Q = (1 — €) - U + ¢ - P for some distri-
bution Q. Every subproduct h of elements chosen from Q
can be written as a product of g;, z;, where g; are chosen
uniformly and independently, and «; are chosen indepen-
dently from Q, . Take the length of subproductsto be m >
k(14 ) /(1—¢). Then, by Chernoff bound, thereare at least
k elements g; in h with probability p > 1 — e~ (1—e)m/2,

Now assumethat i indeed contains > & elementsg;. We
can use the “pulling through” method as above for all ele-
ments ;. Denote by R the distribution of random subprod-
ucts of length k&, sampled from uniform distribution, and by
P the distribution of subproducts of length m sampled from
Q, s(Q) < e. Weobtains(P) > p - s(R). Now apply Theo-
rem 5.2 to get theresult. O
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